Slow neural adaptation to photon noise explains square-root threshold and brightness laws in human rod vision
نویسندگان
چکیده
منابع مشابه
Noise and Bias in Square-Root Compression Schemes
We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bit pixel-1 of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bits pixel-1, depending primarily upon the level of cosmic-ray contamination of the images. Compression to...
متن کاملHigh-brightness, low-noise, all-fiber photon pair source.
We demonstrate an all-fiber photon pair source for the critical telecom C-band. We achieve high pair generation rates in excess of 10 MHz while maintaining coincidence-to-accidental ratios (CARs) greater than 100. This is one of the brightest and lowest-noise photon pair sources ever demonstrated. We achieve the high pair rate through CW-pumped spontaneous four-wave mixing in dispersion-shifted...
متن کاملNeural Control Adaptation to Motor Noise Manipulation
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directe...
متن کاملEvidence for a noise gain control mechanism in human vision
For small, brief targets incremental threshold is known to obey the de Vries-Rose law: threshold rises in direct proportion to the square-root of background intensity. We present data demonstrating a square-root law for brightness matching as well. The square-root law for brightness is obtained over the full range of scotopic vision, and the low intensity end of photopic vision. The classic the...
متن کاملNeural Field Models with Threshold Noise.
The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2014
ISSN: 1534-7362
DOI: 10.1167/14.15.44